Docs
HomeClaude Code PRO
Blog

Getting Started

  • Documentation
  • Claude Code Setup
  • Claude Code Configuration
  • Claude Code Security

Claude Code PRO

  • guideCheatsheet
  • skill/apex
  • skill/brainstorm
  • skill/debug
  • skill/clean-code
  • skill/review-code
  • skill/ci-fixer
  • skill/claude-memory
  • skill/create-prompt
  • skill/create-slash-commands
  • skill/prompt-creator
  • skill/create-skills-workflow
  • skill/skill-creator
  • skill/hook-creator
  • skill/subagent-creator
  • scriptStatusline
  • scriptCommand Validator
  • scriptAuto-Rename Session
  • scriptClaude Code AI
  • agentSnipper
  • agentCode Reviewer
  • agentExplore Codebase
  • agentExplore Docs
  • agentAction
  • agentWeb Search
  • cmd/oneshot
  • cmd/refactor
  • cmd/ultrathink
  • cmd/commit
  • cmd/create-pr
  • cmd/fix-pr-comments
  • cmd/merge
  • cmd/fix-errors
  • cmd/utils/fix-grammar
  • cmd/copywriting

/create-prompt

Expert prompt engineering for creating effective prompts for Claude, GPT, and other LLMs.

The /create-prompt skill helps you create highly effective prompts using proven techniques from Anthropic and OpenAI research.

Workflow

  1. Clarify purpose: What should the prompt accomplish?
  2. Identify model: Claude, GPT, or other (techniques vary slightly)
  3. Select techniques: Choose from core techniques based on task complexity
  4. Structure content: Use XML tags (Claude) or markdown (GPT) for organization
  5. Add examples: Include few-shot examples for format-sensitive outputs
  6. Define success: Add clear success criteria
  7. Test and iterate: Refine based on outputs

Core Structure

Every effective prompt has:

XML
<context>
Background information the model needs
</context>

<task>
Clear, specific instruction of what to do
</task>

<requirements>
- Specific constraints
- Output format
- Edge cases to handle
</requirements>

<examples>
Input/output pairs demonstrating expected behavior
</examples>

<success_criteria>
How to know the task was completed correctly
</success_criteria>

Core Techniques

Be Clear and Direct

Priority: Always apply first

  • State exactly what you want
  • Avoid ambiguous language ("try to", "maybe", "generally")
  • Use "Always..." or "Never..." instead of "Should probably..."
  • Provide specific output format requirements

Use XML Tags

When: Claude prompts, complex structure needed

Claude was trained with XML tags. Use them for:

  • Separating sections: <context>, <task>, <output>
  • Wrapping data: <document>, <schema>, <example>
  • Defining boundaries: Clear start/end of sections

Few-Shot Examples

When: Output format matters, pattern recognition easier than rules

Provide 2-4 input/output pairs showing expected behavior.

Chain of Thought

When: Complex reasoning, multi-step problems

Add "Think step by step" or provide structured reasoning format.

Context Management

When: Long-running tasks, multi-session work, large context usage

For Claude with context awareness:

  • Inform about automatic context compaction
  • Add state tracking (JSON, progress.txt, git)
  • Use test-first patterns for complex implementations
  • Enable autonomous task completion across context windows

Model-Specific Tips

Claude

  • Use XML tags for structure
  • Place instructions before data
  • Be explicit about constraints

GPT

  • Use markdown formatting
  • System prompts work well
  • Clear delimiters help

Anti-Patterns to Avoid

  1. Vague instructions - "Make it better" vs "Improve readability by..."
  2. Missing context - Assuming the model knows your domain
  3. No examples - Expecting format without showing it
  4. No success criteria - How does Claude know when it's done?
/claude-memory/create-slash-commands